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The paper proposes an approximate method for determining the interfacial boundaries 
under conditions in which there are competing interactions of dissipative heat 
liberation and phase change. 

INTRODUCTION 

In practically important processes involving the forced flow of liquids in supercooled 
pipelines, when frontal freezing of the liquid occurs from the wall, the important problem 
arises of determining the interfacial boundaries over the length of the pipe. 

An approximate consideration of this problem is carried out in the present paper on the 
basis of an analytical solution obtained earlier [i] of the problem of the forced flow of a 
liquid in an infinitely long tube under conditions of phase change and the dissipative llbena- 
tion of heat. The possibility of utilizing this solution is connected with the assumption 
that the picture of the flow changes slowly over the length of the tube, when considerable 
changes occur only over lengths which considerably exceed the tube diameter. In this case the 
time of passage of the phase front inwards can be determined, as in [i, 2], by using steady- 
state heat fluxes which do not depend explicitly on the coordinate z, and it is assumed that 
the temperature T and the velocity v depend only on the radius r. This is equivalent to 
the well-known lubrication approximation [3] in the hydrodynamictheory of lubrication, where 
it is assumed that by describing the complete developing flow in a circular tube with a cross 
section equal to the local gap it is possible to describe the actual flow in a tube whose 
radius varies over its length. 

The steady-state profile of the interfacial boundaries over the tube length and the head- 
flow characteristics are derived in the present paper. 

By changing in the limit to the model of the infinite tube [i]~ the zone of applicability 
of this model is indicated. An analysis is also made of the effect of the entry zone on the 
flow characteristics. 

Statement of the Problem 

We will consider the flow of a Newtonian liquid in a tube of circular cross section hav- 
ing radius re and length l, at the walls of which a constant temperature To is maintained 
which is smaller than the temperature of the phase change T,. The liquid undergoes a phase 
change of the first type as a result of the cooling, and an internal interfacial surface is 
formed at r,. The temperature dependence of the viscosity is assumed in the form n = no exp 
(E/RT). The equations for heat conduction and flow are written with the following assump- 
tions: I) the times of thermal and hydrodynamic relaxation are much smaller than the charac- 
teristic time of phase change, i.e., the following conditions are satisfied: 

c 1 RT~ ~1 RT~ 
Q, E ~ 1; n (T,) Q, E ~ 1; 

2) the effects of the inertia terms in the equations of motion and of the convective terms in 
the equation of heat conduction are small~ and the profile of the phase surface varies little 
over the tube length; 3) the flow velocity at any point is directed practically along the tube 
axis (v z >> Vr ); 4) the changes in the axial components of the velocity and temperature along 
the tube axis are much smaller than their changes over the tube radius: ~Vz/~Z << 8Vz/~r , 
~T/~z << ~T/Sr. 
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When these assumptions are taken into account, the equations of continuity, heat conduc- 
tion, and motion in the liquid phase (r < r~) can be written as: 

1 0 (rye)+ & ' = - 0 ;  (1) 
r Or Oz 

1 0 (r%~j OP &,~ 
= - - ,  'g,-: = ~ 1 - -  ; (2) 

r Or Oz Or 

OZT + 1 OT jr_ 1 Ovz 
. . . .  �9 ~ = 0 .  ( 3 )  

Or 2 r Or ~ Or 

In the solid phase (for re > r > r,) 
source applies: 

the. equation of heat conduction in the absence of a heat 

OZT 1 OT 
~- - -  - -  O. ( 4 )  

Or 2 r Or 

The last term in Eq. (3) expresses the rate of dissipative heat liberation. 

The boundary conditions can be written as follows: 

r = ro: T = To; (5) 

r=0:  OT _ 0 ,  Ov~ _ 0 ,  J___La =0;  (6) 
Or Or Or 

r = r , :  T = T , .  Vz=V~=0 .  

Or, _ ~ O_T_T I _ )~ 0__~rT =~._o 
Q,91 Ot Or It=r.+0 

The second of the relationships in Eq. (7) expresses the Stefan condition. 

( 7 )  

Determination of the Interfacial Boundaries 

The interfacial boundary is determined from the following considerations: a) since the 
profile of the phase surface varies only slowly over the tube length, considerable changes in 
the axial component of the velocity v can only occur over distances which are much larger 
than the tube radius, so that v can ~e determined from the solution of the "infinite" model 
[I]; b) since the effects of th~ inertia terms in the equations of motion and of the convec- 
tive terms in the heat conduction equation are small, the heat fluxes to the right and left 
of the phase interface can also be determined from the solution of the "infinite" problem, 
and, as a result, the process of propagation of the phase front does not depend explicitly on 
the coordinate z; c) the profile of the interfaciai boundary is determined essentially from 
the condition that the time of passage of the phase front is equal to the time after which 
the axial velocity component decreases to zero. 

By using the solution of the steady-state system of equations (2)-(6) given in [I], the 
steady-state heat fluxes to the right and left of the phase boundary can be written as: 

X~ 0__~_r I _ 2X~ (To--T,)  (8) 
. . . . . .  +o r, In (r,/ro) z ' 

Or . . . . .  - o - -  Er ,  - -  8 R T ~ L , n ( T , )  V---~z ] J"  

By substituting (8) into (7), it is found that 

dt - Q,p,r:,m _ ln(r,lro)" 4- E E 8RT2,~,,n(T,) \ az I J (9 )  

By substituting the temperature dependence of the viscosity into Eq. (2), the steady- 
state distribution of the axial velocity component is found as [i]: 
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dz ( O P ) - ;  16RT2,~1{ q qrZr~ 
dl ~ z  E,'2, 4 q ( r~ - -  r4, ) -Jc- 4r4, q- 

q t arctg V 4 , I /  + 4 - - q  - - q  4 - - q  " 

(los 

The pressure gradient ~P/~z is determined from the eondltion that the flow rate must be 
r, 

c o n s t a n t ,  Q = 2n ,I' vzrdr = const: 
0 ,7,2 

c)P 4n /L ,;q (115 
Oz -- Q E q" 

The parameter q = q(r,5 is determined from the relationship 

" E,.4 ( oP 1 
i-~'o / = q(4-- q)/2; z .... 16RT~s \ az ] " (125 

The axial coordinate of the interfacial boundary z,(r) is determined by integrating with 
respect to time the longitudinal velocity component v = Vz(r, r,(t55 which depends explicitly 
on the radial coordinate r, (see Eq. (i0)): z ' 

f* 

I z, = Vz(r, r,(t))cJ, (13) 
o 

where t, = t,(r) is determined from the condition v z = 0 when t = t,. 

r,, 
It is obvious that r,(t~) = r. 

it is found that 
By converting in Eq. (13) 

f dt 
z ,  (r)  - i v~( r ,  r , )  - -  a r , .  

"6 dr, 

to integration with respect to 

(145 

By using Eqs. (9)-(12) the determination of the position of the interfacial boundary can be 
reduced to satisfying the quadrature of Eq. (14). 

Results of the Calculations 

The calculations were carried out for the following combinations of parameters: 

l / /  RT,L~ / E 2 -E~L~y = 0 . 2 5  m / s e e ;  = RT~%l~l(T, ) r0 4 (m2-sec)/kg. 

Since the  s o l u t i o n  of  the  problem does not  r e q u i r e  a c o n d i t i o n  a t  the  e x i t  of  the  tube ,  
the quantity z can be treated not only as the longitudinal coordinate but also as the length 
of the tube. It is apparent that with the boundary condition r, = ro at z = O, the profile 
of the interfacial boundary can only decrease monotonically. 

It is clear from Fig. i that an inlet zone can be distinguished on the profiles of the 
interfacial boundaries, beyond which the position of the interfacial boundary almost ceases 
to vary over the length of the tube and coincides with that calculated from the model of flow 
in a tube of infinite length under conditions of dissipative heat liberation and phase change 
[I] (dashed lines in Fig. i). Thus, the boundary beyond which this model is applicable is 
determined by the dependence of the length of the inlet zone on the parameters of the problem. 

Figures 2a and b show the dependence of the parameter Zin on the dimensionless groups 

Q / E~ (T,) S ~2E (T, - -  To) 
v =  4~----T-~ ] /  ~ ; - , ( 1 5 5  

RT,LI 2~IRY~ 
which characterize the flow rare and degree of supercooling of the tube wall, respectively. 

The zone of applicability of the model of flow in a tube of infinite length is given by 
the condition I >> Zin , where Z is the tube length. 
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Fig. 1 Fig. 2 

Fig. i. Monotonically decreasing profiles of the interfacial boundaries at various 
degrees of supercooling of the tube wall: i) S = 0.04; 2) S = 0.01; 3) S = 0,005; 
7 = 0.049. 

Fig. 2. Dependence of the length of the inlet zone Zln , m, on the flow rate, S = 
0.02 (a) and on the degree of supercooling of the wall, y = 0.049 (b). 
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Fig. 3 Fig. 4 

Fig. 3. Comparison of the flow-head characteristic curves for the infinite and fin- 
ite tube models; S = 0.02. G is given in N/m 3. 

Fig. 4. Monotonically increasing profiles of the interfaclal boundaries at various 
degrees of supercooling of the tube walls:i i) S = 0.01; 2 S = 0.02; 3) S = 0,I. 

Comparison of the results of calculating the flow-head characteristic curve from the 
model proposed in [i] and from the model proposed in the present paper shows that they are 
qualitatively in agreement. At small degrees of supercooling of the wall they appear to be 
nonmonotonic (see [i]). The calculations were carried out for tubes of lengths greater than 
Zin. Figure 3 shows the difference G in the values of the pressure drop obtained from the 
models for flow in tubes of infinite and finite lengths as a function of the flow rate Q, 

The decrease of G as the flow rate increases is explained by the fact that the value of 
G is determined by the length of the inlet zone, which decreases as the flow rate increases 
(see Fig. 2a) .... 

From Eqs. (ii) and (12) it follows that over the length of the tube the following ~ela- 
tionship is valid between the dimensionless pressure gradient K and the dimensionless flow 
rate y (see (12), (15)): 

16~ z 
= (16) 

At the entry to the tube, when r, = to, relationship (16) assumes the form: 

1672 
M~ 

(1/2 + 472) ~ 

It can be shown that the relationship ~(7) has a maximum value of • = 2 at r, = ro, i.e., 
that within the framework of the present model and under the conditions of a specified flow 
rate the pressure gradient cannot be greater than the value corresponding to z = 2. 

When a layer of solid material is formed at the inlet of the tube for any reason (for 
instance, when liquid is fed into a supercooled tube) it is possible to form a monotonically 
decreasing solid layer. In this case, the profile of the interfacial surface is calculated 
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within the scope of the present model with the condition r, # ro at the tube inlet. The re- 
sults of such a calculation are shown in Fig. 4. 

NOTATION 

t, time; r, local value of radius; ro, tube radius; r,, radial coordinate of interfaclal 
surface; z, longitudinal coordinate; z,, longitudinal coordinate of interfaclal surface; Zin , 
length of inlet zone; Z, tube length; T, temperature; T,, temperature of phase change; To, tube 
wall %emperature; R, universal gas constant; E, energy of activation of viscous flow; Qe, spec- 
ific heat of the phase change; P, pressure; Q, liquid flow rate; • y, S, q, dimensionless pa- 
rameters; G, difference in pressure drops calculated by various models; %,, %2, thermal conduc- 
tivlties of the liquid and solid phases, respectively; p,, c~, density and heat capacity of 
liquid phase; Vz, Vr, axial and radial components of the liquid velocity; Trz, shear stress; 
~, viscosity; no, preexponential multiplier. 
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5. THREE-DIMENSIONAL MODELING OF VLIS ELEMENTS 

I. I. Abramov and V. V. Kharitonov UDC 621.382.82.001:519,95 

The high efficiency of a multidimensional numerical analysis of semiconductor de- 
vices is confirmed in an example of three-dimensional modeling of Bipolar integral 
circuit structures. 

A change in the configuration of the components in the plane of the crystal, i.e., their 
topology, is the approach approved in practice for improving the characteristics of LIC and 
VLIC elements. In this case, despite the possible signiflcantmachlne time expenditures, the 
three-dimenslonal modeling of transport processes occurring in the elements [i, 2] is neces- 
sary in principle. Such an analysis in the preliminary stage of VLIC design permits complete 
investigation, without involving significant material expenditures, of the influence of dif- 
ferent topological factors on the structure properties, which is extremely important for the 
engineer-developer in the creation of new optimized structures of elements arid investigation 
of the influence of the chan~es made On the whole integrated circuit. As is known, this lat- 
ter is realized by involving the programs of the circuit engineering design stage [2], 

Traditionally it is considered that execution of a rigorous three-dimensional numerical 
analysis (coordinate solution of the problem mentioned)~of just several stationary states of 
the element by solving the fundamental system of equations [3] is impossible in a reasonable 
time even on an ES-1060 type computer. 

The inconsistency of such an assertion is shown in this paper. Results are cited for 
this that have been obtained for two fundamental kinds of bipolar structures of integrated 
circuits and that confirm the high efficiency of the universal program developed for three-- 
dimensional numerical modeling of VLIC elements later designated "TREADE." Underlying it is 
the generalized and perfected method of previous papers [3-6]. 
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